

Informations techniques

AMPCO® 18

Forgé

Composition nominale:

Cuivre (Cu) solde **Aluminium** (AI) 10.50% Fer (Fe) 3.5% Autres 0.5% max.

Caractéristiques mécaniques et physiques	Unités	Valeurs nominales
Charge de rupture R _m	MPa	724
Limite d'élasticité R _{p 0,5}	MPa	296
Allongement A ₅	%	15
Dureté Brinell	HBW 10/3000	183
Dureté Rockwell	HRB	91
Coefficient de striction Ψ	%	14
Résistance à la compression R _{mc}	MPa	990
Limite élastique à la compression R _{pc 0,1}	MPa	230
Résistance au cisaillement R _{cm}	MPa	420
Limite proportionelle R _{pc}	MPa	170
Module d'élasticité E	GPa	115
Charpy ak	J	32
Izod ak	J	30
Fatigue (100'000'000 cycles) σ _D	MPa	240
Densité ρ	g / cm³	7.45
Coefficient de dilatation α	10 ⁻⁶ / K	16.2
Conductibilité thermique λ	W/m·K	63
Conductibilité électrique γ	m / Ω · mm²	8
Conductibilité électrique	% I.A.C.S	14
Chaleur spécifique cp	J/g·K	0.42

Toute promesse relative à une propriété ou une utilisation particulière nécessite la forme écrite de la part d'AMPCO METAL.

La résistance exceptionnelle de cet alliage à l'usure et à la fatigue résulte de la double structure contrôlée des phases alpha et beta.

Cette résistance très élevée de l'AMPCO® 18 se combine à une très bonne ductilité et une ténacité inhabituelle. Les caractéristiques physiques de cet alliage peuvent être modifiées par divers traitements thermiques (voir nuances 18.22,18.23 et 18.136).

UTILISATIONS:

De toutes les nuances, l'AMPCO® 18 est celle qui est la plus utilisée. Cet alliage convient particulièrement pour

engrenages, vis sans fin, roues à vis, pignons, cales, écrous buselures, coussinets, etc...

L'industrie de la construction des machines et machines outils a adopté largement l'AMPCO® 18 comme bronze standard idéal pour toutes les applications qui exigent de bonnes qualités de glissement, résistance à l'usure, résistance à la fatigue, ténacité et/ou résistance à la déformation sous charges élevées.

AMPCO® 18 est largement utilisé par les aciéries dans les applications telles que: écrous de serrage, boîtes à vis, segments, coussinets ou rotules d'arbres d'allonge, engrenages, cales, butées, etc...

L'AMPCO® 18 possède une excellente résistance à la corrosion et est également utilisé dans les installations de décapage pour des pièces comme des caisses à claire-voie, barres de suspensions, traverses, supports, coins, grilles, etc...